
Explainable Verification (Public)

September 24, 2025

Abstract

Summary in English: The cost of software failure is staggering. A rigorous ap-
proach to improving software quality and reducing bugs is sound program analysis
based on abstract interpretation. In this project, we will push the state of the art
in the abstract interpretation of multi-threaded programs written in complex main-
stream programming languages, such as C. The goal of this project is to increase
trust in the verification process through explainability. To trust the analysis speci-
fication, we will explain its mathematical foundations and essence; to increase trust
in the implementation, we will enable tools to explain their results to other tools for
validation; to gain the trust of the end users, we will enable tools to also explain their
reasoning in human-readable form. To achieve these goals, the project will combine
research in sound program analysis with compositional methods from programming
language and category theory.

Summary in Estonian: Tarkvaratõrgete põhjustatud kulu on jahmatav. Range
viis tarkvara kvaliteedi parandamiseks ning vigade vähendamiseks on korrektne pro-
grammianalüüs abstraktse interpretatsiooni abil. Selles projektis parendame ab-
straktse interpretatsiooni meetodeid keerulistes peavoolu programmeerimiskeeltes,
nagu C, kirjutatud mitmelõimeliste programmide analüüsimiseks. Selle projekti
eesmärk on verifitseerimisprotsessi usaldusväärsust seletatavuse kaudu suurendada.
Analüüsi spetsifikatsiooni usaldamiseks selgitame selle matemaatilisi aluseid ja ole-
must; analüsaatori usalduse suurendamiseks võimaldame selle tulemuste selgitamist
eesmärgiga, et need teiste tööriistade poolt valideerida; lõppkasutajate usalduse võit-
miseks võimaldame analüsaatoritel selgitada oma arutluskäiku ka inimloetaval ku-
jul. Nende eesmärkide saavutamiseks ühendab projekt korrektse programmianalüüsi
meetodite uurimise kompositsiooniliste meetoditega programmeerimiskeelte- ja kat-
egooriateooriast.

1 Scientific Background
The cost of software failure is staggering, estimated to be $2.41 trillion in 2022 [68]. Mov-
ing fast is tempting, but in the long run, quality assurance pays off [117]. An exemplary
tale is that of the European avionics giant, Airbus, which is now reaping the rewards of
a focus on quality [7]. Airbus is a leading backer [34, 70, 107] of a rigorous approach to
software verification called abstract interpretation [35], which provides a unified view
of static program analysis. When abstractly interpreting a program, one evaluates it
using abstract values that over-approximate the set of concrete values that the program
may see in actual execution. The theory spurred the development of various numeric ab-
stract domains, capturing relationships between program variables [36, 79], and practical
tools, such as Astreé [37], capable of verifying control software in Airbus aircraft [70].

Given the success of abstract interpretation in providing strong safety guarantees,
the wider adoption of rigorous verification approaches would “dramatically reduce soft-
ware vulnerability” [26]. Thus, one may wonder why abstract interpretation is not more
widely used beyond the safety-critical domain? Unlike most source code analysis tools,
abstract interpreters aim to be sound [105], meaning that they aim to never miss a bug
(no false negatives). This means a sound tool must assume the system can behave in
any possible way that has not been ruled out. This tends to result in many false pos-
itives that overwhelm users. Sound tools, thus, require much more sophisticated and
computationally expensive analyses. Applying these methods on real-world programs is
currently difficult, as they require human intervention and deep specialist knowledge [40].
As the sophistication increases, there is also an increased risk of the tool itself being
incorrect. This is particularly true for generative artificial intelligence. While it can po-
tentially help improving code [123], an industry white paper reports disconcerting trends
for maintainability [52] and Stack Overflow, a popular Q&A site for programmers, has
banned its use [108]. The impact of these tools remains to be seen, but it is clear that as
code becomes easier to generate, it is increasingly important to precisely specify, clearly
understand, and thoroughly verify its correctness.

In this project, we will respond to these concerns through a mixture of foundational
and applied research, building upon and combining the individual expertise of each project
member and partner, so as to be able to successfully answer our main research question:

How can we increase trust in the results of automated software verification
tools, while at the same time making rigorous verification approaches more
easily usable for developers?

Before explaining how we will answer this question, we first review the relevant sci-
entific background.

Abstract interpretation based program analyses have traditionally been specified using
constraint systems [35, 106] over abstract domains. The system speaks about unknowns
representing points of interest in the program, while constraints formalise how the abstract
values stored at each unknown are related. The system is solved by a fixpoint solver [45,
53, 62, 71]. If the domain is a lattice of finite height, the solver will eventually converge to
a solution; otherwise, solving can be accelerated by applying widening and narrowing
to deal with non-Noetherian analysis domains [9, 10, 14]

In the presence of function calls, the unknowns are context-dependent and the
system is potentially infinite. The solver then starts with an initial query to some unknown
of interest and explores the constraint system only as much as needed to determine the
value of the queried unknown, computing a partial solution of the system. Challenges arise
when one targets multi-threaded programs written in complex mainstream languages,
such as C, as reasoning about the correctness of one thread is now dependent on how other
threads behave. Considering all interleavings of threads does not scale; instead, thread-
modular variants of abstract interpretation have been developed [78, 80, 82, 111, 112],
including by us [100, 101], in which one can analyse each thread in isolation, and then
combine the results for a global analysis. In loc. cit. we develop a “local” trace semantics
to better justify the analyses in the challenging, but common setting of shared-variable
concurrency. When threads communicate via shared globals, this results in “non-local”
flows in the analysis—while we analyse a thread based on its local control flow, it can be
influenced by other threads, and vice versa, through the globals. To deal with non-local
flow in the computation of partial solutions of an infinite system over non-Noetherian
domains, our analyses will be based on side-effecting constraint systems [12, 120].

In such systems, if an expression e constrains an unknown, the evaluation of e can also
affect other unknowns using side-effects.

To increase trust in tools built on such methods and to make them more easily usable,
the common theme in the proposed research is explainability—by better explaining their
mathematical foundations and essence, by better explaining the verification results of one
tool to other tools, and by better explaining the verification results to developers.

For explaining the mathematical foundations and essence of such tools, we will
build on methods from programming language and category theory. These fields
are inherently compositional, meaning that definitions, properties, and their proofs are
naturally built from smaller building blocks, with larger ones naturally following from
smaller ones. They provide us a useful starting point for explaining the foundations
of sound program analysis tools in a mathematically natural and compositional way.
In particular, we will explore existing and develop new type-and-effect systems [17,
66, 74, 124] as a compositional typing-based means to structure programs’ correctness
specifications and the abstractions they use, and their correctness proofs. This approach
is particularly suitable because both the programs we verify (concurrent, multi-threaded)
and the methods we use (side-effecting constraints and effectful solvers) contain side-
effects. To relate such typing-based foundations back to the (concrete) semantics of the
programs in question and the respective program analyses, we will employ the (graded)
monadic denotational semantics of effectful programs [66, 75, 76, 81, 88]. We describe
other, more specific related methods in individual work packages.

As automated verification of real-world programs remains a demanding challenge, the
research community has turned to cooperative verification, where different tools focus
on what they do best, and exchange information and explain their results to other
tools to jointly verify programs [22, 23]. This is particularly important with the advent
of large language models, allowing powerful but heuristic tools to generate invariants that
can be validated by sound logic-based tools. The challenge in allowing tools to commu-
nicate is to find a common language for expressing invariants and counterexamples, as
different tools might represent, e.g., the heap and thread scheduling information differ-
ently. It is, however, possible to speak of such things indirectly, e.g., if invariants involve
pointer variables or by introducing ghost variables to represent the scheduler state. Wit-
nesses are such method-agnostic proof objects that help other analysers validate analysis
results. They are used at the International Contest on Software Verification, SV-COMP,
to validate counter-examples [21, 24], and correctness invariants [25], though only for
single-threaded programs.

Regarding explaining program analysis results to users, when a tool identifies
a flaw in the program, it is possible to produce a counterexample execution trace that is
useful for debugging the program and understanding the flaw. For instance, this has been
critical to the success of model checking [32]. In contrast, when a sound analyser verifies
the absence of errors in a program, it does not produce an equivalent human-readable
artefact to explain this verdict. The challenge we shall be working on in this project
is to expose how an automated verifier proves that a property holds along all possible
executions of the program in a way that is interpretable by humans [16].

The project’s findings will be implemented in and evaluated using Goblint [122], a
sound program analysis tool actively developed by our group, in collaboration with TU
Munich.

2 Objectives, hypotheses, methods
As stated above, our goal is to increase trust in the results of automated software verifi-
cation tools, while at the same time making rigorous verification approaches more easily
usable for developers. Our hypothesis is that we can achieve this, if:

O1 We understand the mathematical foundations underpinning the tools and can com-
positionally prove their correctness.

O2 We can produce machine-checkable witnesses that certify the program analysis re-
sults and have other tools validate them.

O3 We can explain the results of the tools to developers in an understandable way.

To achieve these objectives, we will combine the full range of programming language
research and associated mathematical methods through a synthesis of theoretical, applied,
and impact-focussed research, structured into the following work packages (WPs).

WP1: Mathematical Foundations

While sound static program analysis has been successful, reasoning about its correctness
is often non-compositional and cumbersome [83, 100], the mathematical foundations are
at times unclear, and some aspects have not been studied in depth at all. We will address
these concerns using a variety of compositional methods from programming language and
category theory.

WP1.1 Modular Proofs for Thread-Modular Analyses, via Effects When jus-
tifying thread-modular analyses, the traditional approach is to use induction on the steps
of an interleaving semantics [80]. As Mukherjee et al. [83] point out, this makes the proofs
tedious as every abstraction needs to repeat history-based reasoning—instead they advo-
cate for a thread-modular concrete semantics that can be conveniently abstracted, at the
price of sacrificing precision. We have recently presented a thread-local concrete semantics
that is more precise, but again requires history-based arguments for each abstraction [100].
We will investigate methods and abstractions to achieve modularity for such proofs, while
retaining precision. Motivated by their compositional nature, and by the recent work on
using single-threaded programs’ analysis solutions for effect-typing [59], we will investi-
gate the use of type-and-effect systems for compositionally structuring thread-modular
analyses of concurrent programs, including their correctness proofs. We will also draw
inspiration from Ahman et al’s [6] work on typing-based reasoning about monotonic prop-
erties of state, where the main application is exactly to simplify history-based arguments.
We then aim to connect all this back to the concrete thread-local semantics and thread-
modular analysis using a monadic semantics.

WP1.2 Foundations of Side-Effecting Constraint Systems To better understand
the practical applications and usefulness of side-effecting constraint systems, we will in-
vestigate their more precise mathematical essence. While at the moment solvers pass the
meanings of side-effects to constraints as functional arguments, we will explore express-
ing such constraints more abstractly in terms monads and related structures [15, 72, 81].
We expect that this will shed new light both to the generation of such constraints from
control-flow graphs (as a monadic semantics) and to the solvers of such constraints (in
terms of their mathematical foundations and how to better structure their correctness
proofs). A promising direction is to represent the constraints using monads for algebraic

effects [18, 88], because then effect handlers [2, 64, 89] would allow us to supply and up-
date the meanings of side-effects compositionally. By distinguishing between programs’,
constraints’, and solvers’ effects, it will be easier to compositionally reason about allowed
interactions and rule out unwanted ones. We will also investigate side-effecting constraint
systems’ algebraic essence, regarding in which categories and for which functors are their
solutions (initial) algebras for [15], and how both their monadic nature and their partial
solution aspect fit into the algebraic picture. A good understanding of their algebraic
nature will offer new insights into compositional proof methods, such as deriving corre-
sponding (co)induction principles [48, 54].

WP1.3 Interactive and Incremental Analysis Past work on incremental abstract
interpretation has focussed either on single-threaded programs [109, 110] or accumulative
approaches for shared global variables [104]. These methods were designed for analysing
large codebases incrementally. Our more recent efforts [43] have concentrated on the
incremental nature of interactive program analysis. When editing in an IDE, shared
globals that over-approximate the entire editing history are insufficient. Since shared
variables tend to influence significant portions of the program, restarting all globals results
in only marginal performance gains over a complete re-analysis. For a holistic approach,
we will investigate both the mathematical foundations and the algorithmics involved in
achieving truly interactive and incremental analysis. We will build on the results of
WP1.1-1.2 on a monadic, effectful understanding of program analysis to explore combining
them with mathematical methods for modelling programs’ interactive and incremental
behaviour, such as update monads [3] and lenses [4], and more generally the areas of
bidirected transformations [1] and optics [87]. For algorithms, we will explore ways to
limit the reach of recomputation by restarted globals and will implement other algorithmic
improvements to constraint system solving, on the one hand, guided by the mathematics
we develop, and on the other hand, guiding the kinds of mathematics we need to develop
to be able to reason about such algorithms [50, 51].

WP2: Automated Software Verification Algorithms

Engineering a sound static program analysis tool is a complex task. This includes already
just defining and implementing the algorithms, before even thinking of verifying their
correctness. Our goal is to make progress on both fronts. We will investigate symbolic
algorithms for more precise and scalable thread-modular analysis, we will develop novel
means for different verifiers to cooperate, and we will also work on machine-checked proofs.

WP2.1 Verified Solvers for Sound Program Analysis. Making program analysis
tools more dependable is an active area of research, e.g., novel testing methods have been
developed for [29, 67] and there have also been attempts at developing fully certified
analysers [19, 27, 33, 39, 46, 63]. However, none of these target mainstream languages
in their full complexity, and support side-effecting constraint systems and the techniques
(like widening and narrowing) used in our tools. Instead, inspired by these works, and
building on Seidl’s work [56] on the formal verification of simplified versions of our solvers,
we will work towards a better and formally verified feature-complete solver (e.g., based
on the Top-Down [14, 71] or RLD solver [13, 103]) that also accommodates side-effecting
constraints and other techniques crucial in our tools. As extrinsic, direct-style formal
proofs quickly become as complex as pen-and-paper ones, if not worse, then using the
monadic insights from WP1 we will explore solver verification in an intrinsic style, e.g.,
based on Ahman’s past work on Dijkstra monads [5, 74] in F⋆ [115], in which specifications

are expressed compositionally in a type-and-effect system and proofs are intertwined with
code. We will explore using mainstream proof assistants, such as Coq [114] or Agda [113],
and ones tailored for verifying effectful programs, such as F⋆. Franceschino et al. [46]
present an abstract interpreter for a toy language in F⋆, and highlight the benefits of the
intrinsic style.

WP2.2: Precise and Effective Thread-Modular Abstractions. In the past, we
have made progress on thread-modular analysis [100, 101] and Goblint’s performance on
SV-COMP benchmarks is impressive. When analysing real-world C programs, however,
we fail to capture which thread actions may happen in parallel when they rely on heap-
allocated control structures to synchronise their actions. Based on studying the failures
of SV-COMP tools, we have formed the working hypothesis that symbolic reasoning tech-
niques, analogous to how we reason symbolically about heap-based locking patterns [102],
could be adapted to reason about time-based patterns. We will develop both the required
theory, and implement and evaluate these ideas in Goblint. We also expect to benefit
from the theoretical developments in WP1.1, not only in order to better conduct the
proofs, but also to guide the design of novel abstractions and algorithms. We will also
investigate if we can practically apply the use of graded effects as an additional check on
the analysis [59].

WP2.3 Witnesses and Cooperative Verification. Currently, no witness format ex-
ists for exchanging multi-threaded correctness invariants. Expressing invariants over all
possible interleavings is challenging, and thus thread-modular or rely-guarantee invari-
ants are more suitable. We have shown how to integrate invariants involving pointer
variables [98]. We have also shared ideas on how witnesses may reason about thread
scheduling [93], and researchers working on the Ultimate Automizer tool have extended
our proposal to support ghost variables [20]. We are collaborating with them (together
with TU Munich) to develop methods for expressing and validating more refined multi-
threaded invariants. The use of ghost variables provides a complete proof method, but
when the scheduler state is encoded in the program state, this does not provide sufficient
structure for a thread-modular analyser to benefit from the witness. We will be able to
show that exchange is possible in principle, but for exchange of more intricate correct-
ness arguments, we will benefit from work, in WP1.1, on the essence of thread-modular
reasoning. We will also work on witnesses for data race detection: we aim to extend
the witness format towards exchanging information about multiple property violations,
similar to the standardised analysis results interchange format, SARIF [44], to build Co-
OpeRace, a specialised instance of the cooperative verification platform CoVeriTeam [22]
for race detection.

WP3: Explainable Verification in Practice

The usability aspects of sound static analysers deserve more research attention, as em-
pirical studies suggest that poor explainability of analysis results is a serious obstacle
preventing the wider adoption of static analysis tools [30, 42, 60, 85, 116].

WP3.1: Explainable Abstract Interpretation. Apinis and Vojdani [11] provide a
framework for explaining the results of abstract interpretation using the general approach
to deriving meta-analyses developed by Cousot et al. [38]. Using our approach has the
benefit that the explanations are guaranteed to be semantically consistent with the result
of the analysis. Meta-analyses in general are an active area of research, with a potentially

high impact on the usability of verification tools. E.g., there are meta-analyses that fo-
cus on quantifying precision loss [28, 49]. We will contribute to this research as follows.
First, the framework of Apinis and Vojdani [11] was instantiated for a single-threaded
analysis. We will extend it to explain thread-modular analysis [100, 101] in terms of un-
derlying rely-guarantee reasoning [61]. Another important direction is to use our symbolic
representation of the analysis computation, and identify which slices of the systems are
relevant to being able to compute a given property. Then, we can investigate whether
applying results from integer and linear optimisation can provide human-readable expla-
nations, analogous to how generalised Farkas certificates [31] are used in probabilistic
model checking [47].

WP3.2: Practical Research on Verification User Interfaces. Here we aim to
enhance the usability of sound static analysis for developers by seamlessly integrating it
into their workflow. While WP1.3 develops the algorithms for interactive analysis, there
is also the need to research how verification tools should be presented in IDEs. Holter has
started the development of an IDE integration, GobPie [57], for Goblint, using MagPie
Bridge [73]. This allows program analysis results to be presented in the IDE, and updated
as the program is edited, but it gives a static view of the analysis. Recent years have
seen work on how to display analysis results in a more dynamic manner, giving a similar
experience to conventional debuggers: VisuFlow [90], Multiverse Debugging [86, 118], and
Symbolic Debugging [65]. We will explore how abstract reachability graphs of Saan [92]
can be traversed through the Debug Adapter Protocol [77], so as to experience context-
sensitive analysis through a debugger interface. We will then extend this method to
provide a meaningful debugging experience for our thread-modular analyses. This can
be further improved by the methods for extracting symbolic explanations from WP3.1.
Finally, we will devise methods to pinpoint the root causes of the warnings generated
by thread-modular analysis. We can draw inspiration from methods for single-threaded
programs, such as dependency-based alarm diagnosis [91], the repositioning approach [84],
and responsibility analysis [41].

WP3.3: Improving Benchmarking and Evaluation Processes. To assess what
tools can do in practice and incentivise the continuous improvement of these tools, the
community has established verification contests [8]. We regularly compete at SV-COMP
with the Goblint analyser, evaluating our approach [94], auto-tuning [95], memory safety
analyses [96] and witness validation [97]. As we integrate the novel methods we develop
in this project into our analyser, we will continue to compete annually in SV-COMP.
We will also investigate how to evaluate tools on more realistic benchmarks, and aim
to improve the benchmarking process that the community uses. In particular, how to
extract representative kernels of verification challenges from real-world programs that can
be submitted to SV-COMP, and recognising the importance of circling back to the original
program [69], how to continuously evaluate research-based tools in real-world scenarios.
Starting with the concurrent programs suite of Hong and Ryu [58], we aim to set up
a framework—The Continuous Race—for live benchmarking data race verifiers on real-
world programs using continuous integration workflows. There are interesting research
challenges in designing an evaluation process that adapts the ideas from SV-COMP to a
more realistic setting using the cooperative race detection artefacts from WP2.3.

Work plan: WP (co-)leads, Gantt chart, WP interactions

We assign the following leads, co-leads, and partners to individual work packages:

Description Leads & Project Partners & Co-leads
WP1 Mathematical Foundations Ahman & Kammar
WP1.1 Modular Proofs Nester
WP1.2 Foundations of Side-Effecting Apinis
WP1.3 Incremental Analysis Saan
WP2 Verification Algorithms Apinis & Seidl
WP2.1 Verified Solvers Ahman
WP2.2 Thread-Modular Reasoning Vojdani
WP2.3 Witness Validation Saan
WP3 Explainable Verification Vojdani & Lam
WP3.1 Explainable Analysis Apinis
WP3.2 Verification UIs Holter
WP3.3 Evaluation Saan

The durations and order of work packages is visualised in the following Gantt chart:

2025 2026 2027 2028 2029
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

WP1

WP1.1

WP1.2

WP1.3
WP2

WP2.1

WP2.2

WP2.3
WP3

WP3.1

WP3.2

WP3.3

We also foresee a significant amount of interaction between work packages. First, later work
packages will naturally learn from and build on the results of earlier ones. But in addition, there
will also be interaction between overlapping work packages. In particular, the results of WP1 will
be used to inform and guide the more applied work in WP2,3, whereas WP2,3 will give additional
input to WP1 regarding problems faced in practice. This in turn means that WP1.1 and WP1.2
could be revisited even after their planned durations, or WP1.3 started earlier, based on the

findings and encountered challenges in the more applied WP2-3. In addition, all WPs, especially
the more applied ones, will feed into the evaluation and benchmarking WP3.3, whose duration in
the Gantt chart is partitioned to coincide with submitting to and participating at SV-COMPs.

3 Impact

3.1 Expected Results, Scientific Impact, and Future Research

The potential scientific impact of the project is significant, as the project addresses a crit-
ical and timely issue in software development in enhancing software quality and reducing
costly errors [26, 117]. As a result, we will have better algorithms and more dependable
tools for program analysis (WP2, WP3). We will have better understanding of our ap-
proaches mathematical foundations (WP1), and our tools will be easier for users to adopt
(WP3).

Scientific impact. We will advance sound program analysis research by refining
abstractions of concurrent programs and verifying real-world applications. If successful,
the project’s novel focus on usability and explainability in program analysis will result in
the popularization of sound static analysis techniques. The project’s other major focus
on mathematical foundations will explain the essence of such analyses and why we can
trust them, including how to best prove them correct, and it will connect sound program
analysis to other major computer science areas, namely, type systems and category theory.

International collaboration & knowledge transfer. Our demonstrated collabo-
ration with TU Munich and our active participation at SV-COMP has allowed the young
researchers in our group to exchange knowledge with the elite of the European verification
community. We will continue it in this project. Our dedication to contributing real-world
benchmarks to SV-COMP will encourage other researchers and tool developers to address
real-world software issues. The collaboration with our project partners, in particular the
planned visits in both directions, will give our group access to invaluable know-how and
expertise in their respective fields. Furthermore, Ohad Kammar has offered to deliver a
lecture course on quasi-Borel spaces and the semantics of (statistical) probabilistic pro-
gramming during his planned visits to Tartu. We will advertise this course also outside
our group and institution, so that the whole Estonian scientific community could benefit
from it at a time when probabilistic methods are becoming increasingly important with
the emergence of ever more artificial intelligence tools.

Applicability. The open-source nature of our tools facilitates knowledge sharing and
adoption by the broader community. We adhere to high software engineering standards,
using continuous integration to ensure that the tools build, enabling others to use them.
As a result, people are beginning to use Goblint as a baseline representative of the state-
of-the-art in sound static race detection, e.g., an application of Goblint for ensuring the
safety of OCaml bindings to C libraries was presented by Edwin Török of XenServer [119].

3.2 Importance of the project outside academia

By investigating the foundations and developing tools for improving software quality,
including focusing on how to make it easier for developers to adopt such tools, the project
will contribute towards a more reliable digital infrastructure. We have already emphasized
that software errors have staggering economic costs. They also have serious societal
implications because weaknesses in software can be exploited by hackers. As over two-
thirds of vulnerabilities are due to programming errors, sound static analysis is important
for improving cyber security [26].

Implementation plan and technology transfer. In Munich, the PI participated in
the Artemis IA project MBAT [55], working on the analysis of automotive code [99]. Tak-
ing into account the lessons learned, our current proposal is designed with clear pathways
from theoretical results to practical tools, with dedicated work packages for overcoming

the obstacles to industrial application, including explainability (WP3.1) and usability
(WP3.2). Meanwhile, in WP3.3, we aim to improve the community processes for the
evaluation of tools such that the transfer gap between research and industry is short-
ened. Beyond that, we will be proactive in engaging with industry partners. The PI
presented Goblint at the Industry Day of the CHESS project [121], and given resources,
we could participate and help organise industry events in Estonia. This also includes
active participation in Meetups of the Estonian IT community, with interest in functional
programming, where partnerships can be formed. We also plan to participate in one
larger EU project with industrial partners. As a first attempt at this, Dietmar Pfahl, the
professor of software systems here at Tartu, included us in a proposal for Horizon Cluster
4, where we will consider the use of AI for the heuristic parts of the unassuming process.

Teaching plan and knowledge transfer. The project will also ensure the preservation
and enable the growth of programming language and software verification research and
expertise at the University of Tartu and in Estonia more broadly. Our anticipated results
and the knowledge we acquire and develop will have a direct impact on the education of
future IT professionals in Estonia. Our group’s involvement in mandatory undergraduate
programming courses ensures that a considerable proportion of students entering the IT
workforce will be equipped with the knowledge and skills acquired through our research.
This will lead to better-trained professionals capable of developing high-quality software,
and it will allow them to then also bring these good practices to their future employers,
which include both private companies and government institutions. We will also release
open source tools and develop educational resources based on our research to equip users
with the necessary knowledge for effectively using analysers and understanding program
correctness principles.

References
[1] Faris Abou-Saleh, James Cheney, Jeremy Gibbons, James McKinna, and Perdita

Stevens. Introduction to Bidirectional Transformations, pages 1–28. Springer Inter-
national Publishing, Cham, 2018. ISBN 978-3-319-79108-1. doi:10.1007/978-3-319-
79108-1_1.

[2] Danel Ahman. Handling fibred algebraic effects. Proc. ACM Program. Lang., 2
(POPL):7:1–7:29, 2018. doi:10.1145/3158095.

[3] Danel Ahman and Tarmo Uustalu. Update monads: Cointerpreting directed con-
tainers. In Ralph Matthes and Aleksy Schubert, editors, 19th International Confer-
ence on Types for Proofs and Programs, TYPES 2013, April 22-26, 2013, Toulouse,
France, volume 26 of LIPIcs, pages 1–23. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2013. doi:10.4230/LIPICS.TYPES.2013.1.

[4] Danel Ahman and Tarmo Uustalu. Coalgebraic update lenses. In Bart Jacobs,
Alexandra Silva, and Sam Staton, editors, Proceedings of the 30th Conference on
the Mathematical Foundations of Programming Semantics, MFPS 2014, Ithaca, NY,
USA, June 12-15, 2014, volume 308 of Electronic Notes in Theoretical Computer
Science, pages 25–48. Elsevier, 2014. doi:10.1016/J.ENTCS.2014.10.003.

[5] Danel Ahman, Catalin Hritcu, Kenji Maillard, Guido Martínez, Gordon D. Plotkin,
Jonathan Protzenko, Aseem Rastogi, and Nikhil Swamy. Dijkstra monads for
free. In Giuseppe Castagna and Andrew D. Gordon, editors, Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017, pages 515–529. ACM, 2017.
doi:10.1145/3009837.3009878.

[6] Danel Ahman, Cédric Fournet, Catalin Hritcu, Kenji Maillard, Aseem Rastogi, and
Nikhil Swamy. Recalling a witness: foundations and applications of monotonic state.
Proc. ACM Program. Lang., 2(POPL):65:1–65:30, 2018. doi:10.1145/3158153.

[7] Liz Alderman. Airbus Pulls Further Ahead of Boeing in Global Plane Rivalry. The
New York Times, February 2024. ISSN 0362-4331.

[8] Jade Alglave, Alastair F. Donaldson, Daniel Kroening, and Michael Tautschnig.
Making Software Verification Tools Really Work. In Tevfik Bultan and Pao-Ann
Hsiung, editors, Automated Technology for Verification and Analysis, Lecture Notes
in Computer Science, pages 28–42, Berlin, Heidelberg, 2011. Springer. ISBN 978-3-
642-24372-1. doi:10.1007/978-3-642-24372-1_3.

[9] Gianluca Amato, Francesca Scozzari, Helmut Seidl, Kalmer Apinis, and Vesal Vo-
jdani. Efficiently intertwining widening and narrowing. Science of Computer Pro-
gramming, 120:1–24, 2016. doi:10.1016/j.scico.2015.12.005.

[10] Kalmer Apinis. Frameworks for analyzing multi-threaded C. PhD thesis, Institut
für Informatik, Technische Universität München, June 2014.

[11] Kalmer Apinis and Vesal Vojdani. Context-Sensitive Meta-Constraint Systems for
Explainable Program Analysis. In Sriram Sankaranarayanan and Natasha Shary-
gina, editors, Tools and Algorithms for the Construction and Analysis of Systems,
Lecture Notes in Computer Science, pages 453–472, Cham, 2023. Springer Nature
Switzerland. ISBN 978-3-031-30820-8. doi:10.1007/978-3-031-30820-8_27.

https://doi.org/10.1007/978-3-319-79108-1_1
https://doi.org/10.1007/978-3-319-79108-1_1
https://doi.org/10.1145/3158095
https://doi.org/10.4230/LIPICS.TYPES.2013.1
https://doi.org/10.1016/J.ENTCS.2014.10.003
https://doi.org/10.1145/3009837.3009878
https://doi.org/10.1145/3158153
https://doi.org/10.1007/978-3-642-24372-1_3
https://doi.org/10.1016/j.scico.2015.12.005
https://doi.org/10.1007/978-3-031-30820-8_27

[12] Kalmer Apinis, Helmut Seidl, and Vesal Vojdani. Side-Effecting Constraint Systems:
A Swiss Army Knife for Program Analysis. In Programming Languages and Systems,
pages 157–172. Springer, Berlin, Heidelberg, December 2012. doi:10.1007/978-3-642-
35182-2_12.

[13] Kalmer Apinis, Helmut Seidl, and Vesal Vojdani. How to combine widening and
narrowing for non-monotonic systems of equations. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI ’13, pages 377–386, New York, NY, USA, June 2013. Association for
Computing Machinery. ISBN 978-1-4503-2014-6. doi:10.1145/2491956.2462190.

[14] Kalmer Apinis, Helmut Seidl, and Vesal Vojdani. Enhancing Top-Down Solving with
Widening and Narrowing. In Christian W. Probst, Chris Hankin, and René Rydhof
Hansen, editors, Semantics, Logics, and Calculi, number 9560 in Lecture Notes in
Computer Science, pages 272–288. Springer International Publishing, 2016. ISBN
978-3-319-27809-4 978-3-319-27810-0. doi:10.1007/978-3-319-27810-0_14.

[15] Steve Awodey. Category Theory. Oxford University Press, Inc., USA, 2nd edition,
2010. ISBN 0199237182.

[16] Christel Baier and Holger Hermanns. From Verification to Explanation (Track
Introduction). In Tiziana Margaria and Bernhard Steffen, editors, Leveraging
Applications of Formal Methods, Verification and Validation: Tools and Trends,
pages 1–7, Cham, 2021. Springer International Publishing. ISBN 978-3-030-83723-
5. doi:10.1007/978-3-030-83723-5_1.

[17] Andrej Bauer and Matija Pretnar. An effect system for algebraic effects and han-
dlers. In Reiko Heckel and Stefan Milius, editors, Algebra and Coalgebra in Com-
puter Science, pages 1–16, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.
ISBN 978-3-642-40206-7.

[18] Andrej Bauer and Matija Pretnar. Programming with algebraic effects and handlers.
J. Log. Algebr. Meth. Program., 84(1):108–123, 2015.

[19] Benedikt Becker and Claude Marché. Ghost Code in Action: Automated Verification
of a Symbolic Interpreter. In Supratik Chakraborty and Jorge A. Navas, editors,
Verified Software. Theories, Tools, and Experiments, pages 107–123, Cham, 2020.
Springer International Publishing. ISBN 978-3-030-41600-3. doi:10.1007/978-3-030-
41600-3_8.

[20] Manuel Bentele, Dominik Klumpp, and Frank Schüssele. Concurrency Correctness
Witnesses with Ghosts, July 2023. Talk presented at the 1st Workshop on Verifica-
tion Witnesses and Their Validation (VeWit 2023).

[21] Dirk Beyer and Karlheinz Friedberger. Violation Witnesses and Result Validation
for Multi-Threaded Programs. In Tiziana Margaria and Bernhard Steffen, editors,
Leveraging Applications of Formal Methods, Verification and Validation: Verifica-
tion Principles, Lecture Notes in Computer Science, pages 449–470, Cham, 2020.
Springer International Publishing. ISBN 978-3-030-61362-4. doi:10.1007/978-3-030-
61362-4_26.

[22] Dirk Beyer and Sudeep Kanav. CoVeriTeam: On-Demand Composition of Cooper-
ative Verification Systems. In Dana Fisman and Grigore Rosu, editors, Tools and
Algorithms for the Construction and Analysis of Systems, pages 561–579, Cham,

https://doi.org/10.1007/978-3-642-35182-2_12
https://doi.org/10.1007/978-3-642-35182-2_12
https://doi.org/10.1145/2491956.2462190
https://doi.org/10.1007/978-3-319-27810-0_14
https://doi.org/10.1007/978-3-030-83723-5_1
https://doi.org/10.1007/978-3-030-41600-3_8
https://doi.org/10.1007/978-3-030-41600-3_8
https://doi.org/10.1007/978-3-030-61362-4_26
https://doi.org/10.1007/978-3-030-61362-4_26

2022. Springer International Publishing. ISBN 978-3-030-99524-9. doi:10.1007/978-
3-030-99524-9_31.

[23] Dirk Beyer and Heike Wehrheim. Verification Artifacts in Cooperative Verification:
Survey and Unifying Component Framework. In Tiziana Margaria and Bernhard
Steffen, editors, Leveraging Applications of Formal Methods, Verification and Vali-
dation: Verification Principles, pages 143–167, Cham, 2020. Springer International
Publishing. ISBN 978-3-030-61362-4. doi:10.1007/978-3-030-61362-4_8.

[24] Dirk Beyer, Matthias Dangl, Daniel Dietsch, Matthias Heizmann, and Andreas
Stahlbauer. Witness validation and stepwise testification across software verifiers. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, pages 721–733, New York, NY, USA, August 2015. Association
for Computing Machinery. ISBN 978-1-4503-3675-8. doi:10.1145/2786805.2786867.

[25] Dirk Beyer, Matthias Dangl, Daniel Dietsch, and Matthias Heizmann. Cor-
rectness witnesses: exchanging verification results between verifiers. In Pro-
ceedings of the 2016 24th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, FSE 2016, pages 326–337, New York, NY, USA,
November 2016. Association for Computing Machinery. ISBN 978-1-4503-4218-6.
doi:10.1145/2950290.2950351.

[26] Paul E Black, Lee Badger, Barbara Guttman, and Elizabeth Fong. Dramatically
reducing software vulnerabilities: Report to the White House Office of Science and
Technology Policy. Technical Report NIST IR 8151, National Institute of Standards
and Technology, Gaithersburg, MD, November 2016.

[27] David Cachera and David Pichardie. A Certified Denotational Abstract Inter-
preter. In Matt Kaufmann and Lawrence C. Paulson, editors, Interactive Theorem
Proving, pages 9–24, Berlin, Heidelberg, 2010. Springer. ISBN 978-3-642-14052-5.
doi:10.1007/978-3-642-14052-5_3.

[28] Marco Campion, Mila Dalla Preda, and Roberto Giacobazzi. Partial
(In)Completeness in abstract interpretation: limiting the imprecision in program
analysis. Proceedings of the ACM on Programming Languages, 6(POPL):59:1–59:31,
January 2022. doi:10.1145/3498721.

[29] Ignacio Casso, José F. Morales, P. López-García, and Manuel V. Hermenegildo.
Testing Your (Static Analysis) Truths. In Maribel Fernández, editor, Logic-Based
Program Synthesis and Transformation, pages 271–292, Cham, 2021. Springer Inter-
national Publishing. ISBN 978-3-030-68446-4. doi:10.1007/978-3-030-68446-4_14.

[30] Maria Christakis and Christian Bird. What Developers Want and Need
from Program Analysis: An Empirical Study. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering, ASE
2016, pages 332–343, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-3845-5.
doi:10.1145/2970276.2970347.

[31] T. D. Chuong and V. Jeyakumar. A generalized Farkas lemma with a nu-
merical certificate and linear semi-infinite programs with SDP duals. Lin-
ear Algebra and its Applications, 515:38–52, February 2017. ISSN 0024-3795.
doi:10.1016/j.laa.2016.11.008.

https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/10.1007/978-3-030-99524-9_31
https://doi.org/10.1007/978-3-030-61362-4_8
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1007/978-3-642-14052-5_3
https://doi.org/10.1145/3498721
https://doi.org/10.1007/978-3-030-68446-4_14
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1016/j.laa.2016.11.008

[32] Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis. Model checking: al-
gorithmic verification and debugging. Communications of the ACM, 52(11):74–84,
November 2009. ISSN 0001-0782. doi:10.1145/1592761.1592781.

[33] Arthur Correnson and Dominic Steinhöfel. Engineering a Formally Verified Auto-
mated Bug Finder. In Proceedings of the 31st ACM Joint European Software En-
gineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2023, pages 1165–1176, New York, NY, USA, November 2023. Associa-
tion for Computing Machinery. ISBN 9798400703270. doi:10.1145/3611643.3616290.

[34] P. Cousot. Avionic software verification by abstract interpretation. In 2007 ISoLA
Workshop On Leveraging Applications of Formal Methods, Verification and Valida-
tion. Special Workshop Theme: Formal Methods in Avionics, Space and Transport,
Poitiers, France, December 12–14 2007.

[35] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In 4th
ACM Symp. on Principles of Programming Languages (POPL’77), pages 238–252,
1977. doi:10.1145/512950.512973.

[36] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Proceedings of the 5th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, POPL ’78, pages 84–96, New
York, NY, USA, January 1978. Association for Computing Machinery. ISBN 978-
1-4503-7348-7. doi:10.1145/512760.512770.

[37] Patrick Cousot, Radhia Cousot, Jerôme Feret, Laurent Mauborgne, Antoine Miné,
David Monniaux, and Xavier Rival. The ASTREÉ Analyzer. In Mooly Sagiv,
editor, Programming Languages and Systems, pages 21–30, Berlin, Heidelberg, 2005.
Springer. ISBN 978-3-540-31987-0. doi:10.1007/978-3-540-31987-0_3.

[38] Patrick Cousot, Roberto Giacobazzi, and Francesco Ranzato. A²I: abstract² in-
terpretation. Proceedings of the ACM on Programming Languages, 3(POPL):42:1–
42:31, January 2019. doi:10.1145/3290355.

[39] Paulo Emílio de Vilhena, François Pottier, and Jacques-Henri Jourdan. Spy game:
verifying a local generic solver in Iris. Proceedings of the ACM on Programming
Languages, 4(POPL):33:1–33:28, January 2020. doi:10.1145/3371101.

[40] David Delmas and Jean Souyris. Astrée: From Research to Industry. In Hanne Riis
Nielson and Gilberto Filé, editors, Static Analysis, pages 437–451, Berlin, Heidel-
berg, 2007. Springer. ISBN 978-3-540-74061-2. doi:10.1007/978-3-540-74061-2_27.

[41] Chaoqiang Deng and Patrick Cousot. Responsibility Analysis by Abstract Interpre-
tation. In Bor-Yuh Evan Chang, editor, Static Analysis, Lecture Notes in Computer
Science, pages 368–388, Cham, 2019. Springer International Publishing. ISBN 978-
3-030-32304-2. doi:10.1007/978-3-030-32304-2_18.

[42] Lisa Nguyen Quang Do and Eric Bodden. Explaining Static Analysis With Rule
Graphs. IEEE Transactions on Software Engineering, 48(2):678–690, February
2022. ISSN 1939-3520. doi:10.1109/TSE.2020.2999534. Conference Name: IEEE
Transactions on Software Engineering.

https://doi.org/10.1145/1592761.1592781
https://doi.org/10.1145/3611643.3616290
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512760.512770
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1145/3290355
https://doi.org/10.1145/3371101
https://doi.org/10.1007/978-3-540-74061-2_27
https://doi.org/10.1007/978-3-030-32304-2_18
https://doi.org/10.1109/TSE.2020.2999534

[43] Julian Erhard, Simmo Saan, Sarah Tilscher, Michael Schwarz, Karoliine Holter,
Vesal Vojdani, and Helmut Seidl. Interactive Abstract Interpretation: Reanalyzing
Whole Programs for Cheap, November 2022. arXiv:2209.10445 [cs].

[44] Michael C. Fanning and Laurence J. Golding. Static Analysis Results
Interchange Format (SARIF) Version 2.1.0 Plus Errata 01. https:
//docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/os/sarif-v2.1.
0-errata01-os-complete.html, 8 2023. OASIS Standard incorporating Approved
Errata. Latest stage available at https://docs.oasis-open.org/sarif/sarif/
v2.1.0/sarif-v2.1.0.html.

[45] Christian Fecht. Gena—a tool for generating prolog analyzers from specifications. In
Static Analysis: Second International Symposium, SAS’95 Glasgow, UK, September
25–27, 1995 Proceedings 2, pages 418–419. Springer, 1995. doi:10.1007/3-540-60360-
3_53.

[46] Lucas Franceschino, David Pichardie, and Jean-Pierre Talpin. Verified Functional
Programming of an Abstract Interpreter. In Cezara Drăgoi, Suvam Mukherjee,
and Kedar Namjoshi, editors, Static Analysis, pages 124–143, Cham, 2021. Springer
International Publishing. ISBN 978-3-030-88806-0. doi:10.1007/978-3-030-88806-
0_6.

[47] Florian Funke, Simon Jantsch, and Christel Baier. Farkas Certificates and Minimal
Witnesses for Probabilistic Reachability Constraints. In Armin Biere and David
Parker, editors, Tools and Algorithms for the Construction and Analysis of Systems,
pages 324–345, Cham, 2020. Springer International Publishing. ISBN 978-3-030-
45190-5. doi:10.1007/978-3-030-45190-5_18.

[48] Neil Ghani, Patricia Johann, and Clément Fumex. Generic fibrational induction.
Log. Methods Comput. Sci., 8(2), 2012. doi:10.2168/LMCS-8(2:12)2012.

[49] Roberto Giacobazzi, Francesco Logozzo, and Francesco Ranzato. Analyzing Pro-
gram Analyses. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’15, pages 261–273, New
York, NY, USA, January 2015. Association for Computing Machinery. ISBN 978-
1-4503-3300-9. doi:10.1145/2676726.2676987.

[50] Matthew A. Hammer, Khoo Yit Phang, Michael Hicks, and Jeffrey S. Foster. Adap-
ton: composable, demand-driven incremental computation. In Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI ’14, pages 156–166, New York, NY, USA, June 2014. Association for
Computing Machinery. ISBN 978-1-4503-2784-8. doi:10.1145/2594291.2594324.

[51] Matthew A. Hammer, Jana Dunfield, Kyle Headley, Nicholas Labich, Jeffrey S.
Foster, Michael Hicks, and David Van Horn. Incremental computation with names.
In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015,
pages 748–766, New York, NY, USA, October 2015. Association for Computing
Machinery. ISBN 978-1-4503-3689-5. doi:10.1145/2814270.2814305.

[52] William Harding and Matthew Kloster. Coding on Copilot: 2023 Data Suggests
Downward Pressure on Code Quality (incl 2024 projections) - GitClear. Technical
report, GitClear, January 2024.

https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/os/sarif-v2.1.0-errata01-os-complete.html
https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/os/sarif-v2.1.0-errata01-os-complete.html
https://docs.oasis-open.org/sarif/sarif/v2.1.0/errata01/os/sarif-v2.1.0-errata01-os-complete.html
https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html
https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html
https://doi.org/10.1007/3-540-60360-3_53
https://doi.org/10.1007/3-540-60360-3_53
https://doi.org/10.1007/978-3-030-88806-0_6
https://doi.org/10.1007/978-3-030-88806-0_6
https://doi.org/10.1007/978-3-030-45190-5_18
https://doi.org/10.2168/LMCS-8(2:12)2012
https://doi.org/10.1145/2676726.2676987
https://doi.org/10.1145/2594291.2594324
https://doi.org/10.1145/2814270.2814305

[53] Manuel V. Hermenegildo, Richard Warren, and Saumya K. Debray. Global flow
analysis as a practical compilation tool. The Journal of Logic Programming, 13(4):
349–366, 1992. doi:10.1016/0743-1066(92)90053-6.

[54] Claudio Hermida and Bart Jacobs. Structural induction and coinduction in a fibra-
tional setting. Inf. Comput., 145(2):107–152, 1998. doi:10.1006/INCO.1998.2725.

[55] Jens Herrmann et al. MBAT: Combined model-based analysis and testing of em-
bedded systems, 2011 – 2014.

[56] Martin Hofmann, Aleksandr Karbyshev, and Helmut Seidl. Verifying a Local
Generic Solver in Coq. In Static Analysis, pages 340–355. Springer, Berlin, Hei-
delberg, September 2010. doi:10.1007/978-3-642-15769-1_21.

[57] Karoliine Holter, Simmo Saan, and Vesal Vojdani. GobPie: A Magpie Bridge for
Goblint. Available at https://github.com/goblint/GobPie, 2022.

[58] Jaemin Hong and Sukyoung Ryu. Concrat: An Automatic C-to-Rust Lock
API Translator for Concurrent Programs. In Proceedings of the 45th Inter-
national Conference on Software Engineering, ICSE ’23, pages 716–728, Mel-
bourne, Victoria, Australia, July 2023. IEEE Press. ISBN 978-1-66545-701-9.
doi:10.1109/ICSE48619.2023.00069.

[59] Andrej Ivaskovic, Alan Mycroft, and Dominic Orchard. Data-flow analyses as ef-
fects and graded monads. In Zena M. Ariola, editor, 5th International Confer-
ence on Formal Structures for Computation and Deduction, FSCD 2020, June
29-July 6, 2020, Paris, France (Virtual Conference), volume 167 of LIPIcs,
pages 15:1–15:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPICS.FSCD.2020.15.

[60] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. Why
Don’t Software Developers Use Static Analysis Tools to Find Bugs? In Proceedings
of the 2013 International Conference on Software Engineering, ICSE ’13, pages
672–681, Piscataway, NJ, USA, 2013. IEEE Press. ISBN 978-1-4673-3076-3.

[61] C. B. Jones. Specification and Design of (Parallel) Programs. 9th IFIP World Com-
puter Congress (Information Processing 83), 1983. Publisher: Newcastle University.

[62] Niels Jørgensen. Finding fixpoints in finite function spaces using neededness analysis
and chaotic iteration. In International Static Analysis Symposium, pages 329–345.
Springer, 1994.

[63] Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and David
Pichardie. A Formally-Verified C Static Analyzer. In Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’15, pages 247–259, New York, NY, USA, January 2015. Association for
Computing Machinery. ISBN 978-1-4503-3300-9. doi:10.1145/2676726.2676966.

[64] Ohad Kammar, Sam Lindley, and Nicolas Oury. Handlers in action. In Greg Mor-
risett and Tarmo Uustalu, editors, Proc. of 18th ACM SIGPLAN Int. Conf. on
Functional Programming, ICFP 2013, pages 145–158. ACM, 2013. ISBN 978-1-
4503-2326-0. doi:10.1145/2500365.2500590.

https://doi.org/10.1016/0743-1066(92)90053-6
https://doi.org/10.1006/INCO.1998.2725
https://doi.org/10.1007/978-3-642-15769-1_21
https://github.com/goblint/GobPie
https://doi.org/10.1109/ICSE48619.2023.00069
https://doi.org/10.4230/LIPICS.FSCD.2020.15
https://doi.org/10.1145/2676726.2676966
https://doi.org/10.1145/2500365.2500590

[65] Nat Karmios, Sacha-Élie Ayoun, and Philippa Gardner. Symbolic Debugging with
Gillian. In Proceedings of the 1st ACM International Workshop on Future Debugging
Techniques, DEBT 2023, pages 1–2, New York, NY, USA, July 2023. Association
for Computing Machinery. ISBN 9798400702457. doi:10.1145/3605155.3605861.

[66] Shin-ya Katsumata. Parametric effect monads and semantics of effect sys-
tems. In Suresh Jagannathan and Peter Sewell, editors, The 41st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’14, San Diego, CA, USA, January 20-21, 2014, pages 633–646. ACM, 2014.
doi:10.1145/2535838.2535846.

[67] Christian Klinger, Maria Christakis, and Valentin Wüstholz. Differentially test-
ing soundness and precision of program analyzers. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2019,
pages 239–250, New York, NY, USA, July 2019. Association for Computing Machin-
ery. ISBN 978-1-4503-6224-5. doi:10.1145/3293882.3330553.

[68] Herb Krasner. Cost of Poor Software Quality in the U.S.: A 2022 Report, 2022.

[69] Daniel Kroening and Michael Tautschnig. Automating Software Analysis at Large
Scale. In Petr Hliněný, Zdeněk Dvořák, Jiří Jaroš, Jan Kofroň, Jan Kořenek,
Petr Matula, and Karel Pala, editors, Mathematical and Engineering Methods in
Computer Science, Lecture Notes in Computer Science, pages 30–39, Cham, 2014.
Springer International Publishing. ISBN 978-3-319-14896-0. doi:10.1007/978-3-319-
14896-0_3.

[70] Daniel Kästner, Reinhard Wilhelm, and Christian Ferdinand. Abstract Interpreta-
tion in Industry – Experience and Lessons Learned. In Manuel V. Hermenegildo
and José F. Morales, editors, Static Analysis, pages 10–27, Cham, 2023. Springer
Nature Switzerland. ISBN 978-3-031-44245-2. doi:10.1007/978-3-031-44245-2_2.

[71] Baudouin Le Charlier and Pascal Van Hentenryck. A Universal Top-Down Fixpoint
Algorithm. Technical Report 92–22, Institute of Computer Science, University of
Namur, Belgium, 1992.

[72] P. B. Levy. Call-By-Push-Value: A Functional/Imperative Synthesis, volume 2 of
Sem. Structures in Computation. Springer, 2004.

[73] Linghui Luo, Julian Dolby, and Eric Bodden. MagpieBridge: A General Ap-
proach to Integrating Static Analyses into IDEs and Editors (Tool Insights Pa-
per). In Alastair F. Donaldson, editor, 33rd European Conference on Object-
Oriented Programming (ECOOP 2019), volume 134 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 21:1–21:25, Dagstuhl, Germany, 2019.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-111-5.
doi:10.4230/LIPIcs.ECOOP.2019.21. ISSN: 1868-8969.

[74] Kenji Maillard, Danel Ahman, Robert Atkey, Guido Martínez, Catalin Hritcu, Ex-
equiel Rivas, and Éric Tanter. Dijkstra monads for all. Proc. ACM Program. Lang.,
3(ICFP):104:1–104:29, 2019. doi:10.1145/3341708.

[75] Dylan McDermott and Tarmo Uustalu. Flexibly graded monads and graded alge-
bras. In Ekaterina Komendantskaya, editor, Mathematics of Program Construction -
14th International Conference, MPC 2022, Tbilisi, Georgia, September 26-28, 2022,

https://doi.org/10.1145/3605155.3605861
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.1145/3293882.3330553
https://doi.org/10.1007/978-3-319-14896-0_3
https://doi.org/10.1007/978-3-319-14896-0_3
https://doi.org/10.1007/978-3-031-44245-2_2
https://doi.org/10.4230/LIPIcs.ECOOP.2019.21
https://doi.org/10.1145/3341708

Proceedings, volume 13544 of Lecture Notes in Computer Science, pages 102–128.
Springer, 2022. doi:10.1007/978-3-031-16912-0_4.

[76] P.-A. Melliès. Parametric Monads and Enriched Adjunctions. Manuscript.
https://www.irif.fr/∼mellies/tensorial-logic/8-parametric-monads-and-enriched-
adjunctions.pdf, 2012.

[77] Microsoft. Debug Adapter Protocol. Available at https://microsoft.github.io/debug-
adapter-protocol/.

[78] Antoine Miné. Relational thread-modular static value analysis by abstract interpre-
tation. In Kenneth L. McMillan and Xavier Rival, editors, Verification, Model
Checking, and Abstract Interpretation - 15th International Conference, VMCAI
2014, San Diego, CA, USA, January 19-21, 2014, Proceedings, volume 8318 of
Lecture Notes in Computer Science, pages 39–58. Springer, 2014. doi:10.1007/978-
3-642-54013-4_3.

[79] Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic Compu-
tation, 19(1):31–100, March 2006. ISSN 1573-0557. doi:10.1007/s10990-006-8609-1.

[80] Antoine Miné. Static Analysis of Run-Time Errors in Embedded Real-Time Parallel
C Programs. Logical Methods in Computer Science, Volume 8, Issue 1, March 2012.
ISSN 1860-5974. doi:10.2168/LMCS-8(1:26)2012. Publisher: Episciences.org.

[81] Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92,
1991. doi:10.1016/0890-5401(91)90052-4.

[82] Raphaël Monat and Antoine Miné. Precise Thread-Modular Abstract Interpretation
of Concurrent Programs Using Relational Interference Abstractions. In Ahmed
Bouajjani and David Monniaux, editors, Verification, Model Checking, and Abstract
Interpretation, Lecture Notes in Computer Science, pages 386–404, Cham, 2017.
Springer International Publishing. ISBN 978-3-319-52234-0. doi:10.1007/978-3-319-
52234-0_21.

[83] Suvam Mukherjee, Oded Padon, Sharon Shoham, Deepak D’Souza, and Noam
Rinetzky. Thread-Local Semantics and Its Efficient Sequential Abstractions for
Race-Free Programs. In Francesco Ranzato, editor, Static Analysis, pages 253–
276, Cham, 2017. Springer International Publishing. ISBN 978-3-319-66706-5.
doi:10.1007/978-3-319-66706-5_13.

[84] Tukaram Muske, Rohith Talluri, and Alexander Serebrenik. Repositioning of static
analysis alarms. In Proceedings of the 27th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, ISSTA 2018, pages 187–197, New York, NY,
USA, July 2018. Association for Computing Machinery. ISBN 978-1-4503-5699-2.
doi:10.1145/3213846.3213850.

[85] Marcus Nachtigall, Lisa Nguyen Quang Do, and Eric Bodden. Explaining Static
Analysis - A Perspective. In 2019 34th IEEE/ACM International Conference on
Automated Software Engineering Workshop (ASEW), pages 29–32, November 2019.
doi:10.1109/ASEW.2019.00023. ISSN: 2151-0830.

[86] Matthias Pasquier, Ciprian Teodorov, Frédéric Jouault, Matthias Brun, Luka
Le Roux, and Loïc Lagadec. Temporal Breakpoints for Multiverse Debugging.

https://doi.org/10.1007/978-3-031-16912-0_4
https://www.irif.fr/~mellies/tensorial-logic/8-parametric-monads-and-enriched-adjunctions.pdf
https://www.irif.fr/~mellies/tensorial-logic/8-parametric-monads-and-enriched-adjunctions.pdf
https://microsoft.github.io/debug-adapter-protocol/
https://microsoft.github.io/debug-adapter-protocol/
https://doi.org/10.1007/978-3-642-54013-4_3
https://doi.org/10.1007/978-3-642-54013-4_3
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.2168/LMCS-8(1:26)2012
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1007/978-3-319-52234-0_21
https://doi.org/10.1007/978-3-319-52234-0_21
https://doi.org/10.1007/978-3-319-66706-5_13
https://doi.org/10.1145/3213846.3213850
https://doi.org/10.1109/ASEW.2019.00023

In Proceedings of the 16th ACM SIGPLAN International Conference on Soft-
ware Language Engineering, SLE 2023, pages 125–137, New York, NY, USA,
October 2023. Association for Computing Machinery. ISBN 9798400703966.
doi:10.1145/3623476.3623526.

[87] Matthew Pickering, Jeremy Gibbons, and Nicolas Wu. Profunctor op-
tics: Modular data accessors. Art Sci. Eng. Program., 1(2):7, 2017.
doi:10.22152/PROGRAMMING-JOURNAL.ORG/2017/1/7.

[88] Gordon D. Plotkin and John Power. Notions of computation determine monads.
In Mogens Nielsen and Uffe Engberg, editors, Foundations of Software Science
and Computation Structures, 5th International Conference, FOSSACS 2002. Held
as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2002 Grenoble, France, April 8-12, 2002, Proceedings, volume 2303 of Lec-
ture Notes in Computer Science, pages 342–356. Springer, 2002. doi:10.1007/3-540-
45931-6_24.

[89] Gordon D. Plotkin and Matija Pretnar. Handling algebraic effects. Logical Methods
in Computer Science, 9(4:23), 2013.

[90] Lisa Nguyen Quang Do, Stefan Krüger, Patrick Hill, Karim Ali, and Eric Bodden.
VisuFlow: A Debugging Environment for Static Analyses. In 2018 IEEE/ACM 40th
International Conference on Software Engineering: Companion (ICSE-Companion),
pages 89–92, May 2018. ISSN: 2574-1934.

[91] Xavier Rival. Abstract Dependences for Alarm Diagnosis. In Kwangkeun Yi,
editor, Programming Languages and Systems, Lecture Notes in Computer Sci-
ence, pages 347–363, Berlin, Heidelberg, 2005. Springer. ISBN 978-3-540-32247-4.
doi:10.1007/11575467_23.

[92] Simmo Saan. Witness Generation for Data-flow Analysis. Master’s thesis, Tartu
Ülikool, 2020.

[93] Simmo Saan and Julian Erhard. Beyond Automaton-Based Witnesses and Location
Invariants, April 2023. Talk presented at the 4th Workshop on Cooperative Software
Verification (COOP 2023).

[94] Simmo Saan, Michael Schwarz, Kalmer Apinis, Julian Erhard, Helmut Seidl, Ralf
Vogler, and Vesal Vojdani. Goblint: Thread-Modular Abstract Interpretation Using
Side-Effecting Constraints (Competition Contribution). In Jan Friso Groote and
Kim Guldstrand Larsen, editors, Tools and Algorithms for the Construction and
Analysis of Systems, pages 438–442, Cham, 2021. Springer International Publishing.
ISBN 978-3-030-72013-1. doi:10.1007/978-3-030-72013-1_28.

[95] Simmo Saan, Michael Schwarz, Julian Erhard, Manuel Pietsch, Helmut Seidl, Sarah
Tilscher, and Vesal Vojdani. Goblint: Autotuning Thread-Modular Abstract Inter-
pretation (Competition Contribution). In Sriram Sankaranarayanan and Natasha
Sharygina, editors, Tools and Algorithms for the Construction and Analysis of Sys-
tems, pages 547–552, Cham, 2023. Springer Nature Switzerland. ISBN 978-3-031-
30820-8. doi:10.1007/978-3-031-30820-8_34.

[96] Simmo Saan, Julian Erhard, Michael Schwarz, Stanimir Bozhilov, Karoliine Holter,
Sarah Tilscher, Vesal Vojdani, and Helmut Seidl. Goblint: Abstract Interpretation

https://doi.org/10.1145/3623476.3623526
https://doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2017/1/7
https://doi.org/10.1007/3-540-45931-6_24
https://doi.org/10.1007/3-540-45931-6_24
https://doi.org/10.1007/11575467_23
https://doi.org/10.1007/978-3-030-72013-1_28
https://doi.org/10.1007/978-3-031-30820-8_34

for Memory Safety and Termination (Competition Contribution). In Tools and
Algorithms for the Construction and Analysis of Systems, 2024. To appear.

[97] Simmo Saan, Julian Erhard, Michael Schwarz, Stanimir Bozhilov, Karoliine Holter,
Sarah Tilscher, Vesal Vojdani, and Helmut Seidl. Goblint Validator: Correctness
Witness Validation by Abstract Interpretation (Competition Contribution). In Tools
and Algorithms for the Construction and Analysis of Systems, 2024. To appear.

[98] Simmo Saan, Michael Schwarz, Julian Erhard, Helmut Seidl, Sarah Tilscher, and
Vesal Vojdani. Correctness Witness Validation by Abstract Interpretation. In Rayna
Dimitrova, Ori Lahav, and Sebastian Wolff, editors, Verification, Model Checking,
and Abstract Interpretation, pages 74–97, Cham, 2024. Springer Nature Switzerland.
ISBN 978-3-031-50524-9. doi:10.1007/978-3-031-50524-9_4.

[99] Martin D. Schwarz, Helmut Seidl, Vesal Vojdani, Peter Lammich, and Markus
Müller-Olm. Static analysis of interrupt-driven programs synchronized via the pri-
ority ceiling protocol. In Proceedings of the 38th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL ’11, pages 93–104, New
York, NY, USA, January 2011. Association for Computing Machinery. ISBN 978-
1-4503-0490-0. doi:10.1145/1926385.1926398.

[100] Michael Schwarz, Simmo Saan, Helmut Seidl, Kalmer Apinis, Julian Erhard, and
Vesal Vojdani. Improving Thread-Modular Abstract Interpretation. In Cezara Dră-
goi, Suvam Mukherjee, and Kedar Namjoshi, editors, Static Analysis, Lecture Notes
in Computer Science, pages 359–383, Cham, 2021. Springer International Publish-
ing. ISBN 978-3-030-88806-0. doi:10.1007/978-3-030-88806-0_18.

[101] Michael Schwarz, Simmo Saan, Helmut Seidl, Julian Erhard, and Vesal Vojdani.
Clustered Relational Thread-Modular Abstract Interpretation with Local Traces.
In Thomas Wies, editor, Programming Languages and Systems, Lecture Notes in
Computer Science, pages 28–58, Cham, 2023. Springer Nature Switzerland. ISBN
978-3-031-30044-8. doi:10.1007/978-3-031-30044-8_2.

[102] Helmut Seidl, Vesal Vojdani, and Varmo Vene. A Smooth Combination of Linear
and Herbrand Equalities for Polynomial Time Must-Alias Analysis. In Ana Cav-
alcanti and Dennis R. Dams, editors, FM 2009: Formal Methods, Lecture Notes
in Computer Science, pages 644–659, Berlin, Heidelberg, 2009. Springer. ISBN
978-3-642-05089-3. doi:10.1007/978-3-642-05089-3_41.

[103] Helmut Seidl, Reinhard Wilhelm, and Sebastian Hack. Compiler Design: Analysis
and Transformation. Springer Science & Business Media, 2012. ISBN 978-3-642-
17548-0. doi:10.1007/978-3-642-17548-0.

[104] Helmut Seidl, Julian Erhard, and Ralf Vogler. Incremental Abstract Interpretation.
In Alessandra Di Pierro, Pasquale Malacaria, and Rajagopal Nagarajan, editors,
From Lambda Calculus to Cybersecurity Through Program Analysis: Essays Dedi-
cated to Chris Hankin on the Occasion of His Retirement, pages 132–148. Springer
International Publishing, Cham, 2020. ISBN 978-3-030-41103-9. doi:10.1007/978-
3-030-41103-9_5.

[105] Ilya Sergey. What does it mean for a program analysis to be sound?
https://blog.sigplan.org/2019/08/07/what-does-it-mean-for-a-program-analysis-to-
be-sound/, 2019.

https://doi.org/10.1007/978-3-031-50524-9_4
https://doi.org/10.1145/1926385.1926398
https://doi.org/10.1007/978-3-030-88806-0_18
https://doi.org/10.1007/978-3-031-30044-8_2
https://doi.org/10.1007/978-3-642-05089-3_41
https://doi.org/10.1007/978-3-642-17548-0
https://doi.org/10.1007/978-3-030-41103-9_5
https://doi.org/10.1007/978-3-030-41103-9_5
https://blog.sigplan.org/2019/08/07/what-does-it-mean-for-a-program-analysis-to-be-sound/
https://blog.sigplan.org/2019/08/07/what-does-it-mean-for-a-program-analysis-to-be-sound/

[106] Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow analy-
sis. In S.S. Muchnick and N.D. Jones, editors, Program Flow Analysis: Theory and
Application, pages 189–233. Prentice-Hall, 1981.

[107] Jean Souyris. Industrial experience of abstract interpretation-based static analyzers.
In Renè Jacquart, editor, Building the Information Society, pages 393–400, Boston,
MA, 2004. Springer US. ISBN 978-1-4020-8157-6.

[108] Stack Exchange Inc. What is this site’s policy on content generated by generative ar-
tificial intelligence tools? - Help Center. https://stackoverflow.com/help/ai-policy,
2024.

[109] Benno Stein, Bor-Yuh Evan Chang, and Manu Sridharan. Demanded abstract
interpretation. In Proceedings of the 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, PLDI 2021, pages 282–295,
New York, NY, USA, June 2021. Association for Computing Machinery. ISBN
978-1-4503-8391-2. doi:10.1145/3453483.3454044.

[110] Benno Stein, Bor-Yuh Evan Chang, and Manu Sridharan. Interactive Abstract
Interpretation with Demanded Summarization. ACM Transactions on Programming
Languages and Systems, February 2024. ISSN 0164-0925. doi:10.1145/3648441.

[111] Thibault Suzanne and Antoine Miné. From array domains to abstract interpretation
under store-buffer-based memory models. In Xavier Rival, editor, Static Analysis -
23rd International Symposium, SAS 2016, Edinburgh, UK, September 8-10, 2016,
Proceedings, volume 9837 of Lecture Notes in Computer Science, pages 469–488.
Springer, 2016. doi:10.1007/978-3-662-53413-7_23.

[112] Thibault Suzanne and Antoine Miné. Relational thread-modular abstract inter-
pretation under relaxed memory models. In Sukyoung Ryu, editor, Programming
Languages and Systems - 16th Asian Symposium, APLAS 2018, Wellington, New
Zealand, December 2-6, 2018, Proceedings, volume 11275 of Lecture Notes in Com-
puter Science, pages 109–128. Springer, 2018. doi:10.1007/978-3-030-02768-1_6.

[113] Agda Development Team. The Agda Proof Assistant.
https://wiki.portal.chalmers.se/agda/pmwiki.php, 20.03.2024.

[114] Coq Development Team. The Coq Proof Assistant. https://coq.inria.fr, 20.03.2024.

[115] F⋆ Development Team. The F⋆ Proof Assistant. https://fstar-lang.org, 20.03.2024.

[116] Daniil Tiganov, Lisa Nguyen Quang Do, and Karim Ali. Designing UIs for static-
analysis tools. Communications of the ACM, 65(2):52–58, January 2022. ISSN
0001-0782. doi:10.1145/3486600.

[117] Adam Tornhill and Markus Borg. Code red: the business impact of code quality -
a quantitative study of 39 proprietary production codebases. In Proceedings of the
International Conference on Technical Debt, TechDebt ’22, pages 11–20, New York,
NY, USA, August 2022. Association for Computing Machinery. ISBN 978-1-4503-
9304-1. doi:10.1145/3524843.3528091.

https://stackoverflow.com/help/ai-policy
https://doi.org/10.1145/3453483.3454044
https://doi.org/10.1145/3648441
https://doi.org/10.1007/978-3-662-53413-7_23
https://doi.org/10.1007/978-3-030-02768-1_6
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://coq.inria.fr
https://fstar-lang.org
https://doi.org/10.1145/3486600
https://doi.org/10.1145/3524843.3528091

[118] Carmen Torres Lopez, Robbert Gurdeep Singh, Stefan Marr, Elisa Gonzalez Boix,
and Christophe Scholliers. Multiverse Debugging: Non-Deterministic Debug-
ging for Non-Deterministic Programs (Brave New Idea Paper). In DROPS-
IDN/v2/document/10.4230/LIPIcs.ECOOP.2019.27. Schloss-Dagstuhl - Leibniz
Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ECOOP.2019.27.

[119] Edwin Török. Targeted Static Analysis for OCaml C Stubs: eliminating gremlins
from the code, July 2023. arXiv:2307.14909 [cs].

[120] Vesal Vojdani. Static Data Race Analysis of Heap-Manipulating C Programs. PhD
thesis, University of Tartu, 2010.

[121] Vesal Vojdani. Goblint & GobPie: Towards Usable Data Race Verification.
https://formela.fi.muni.cz/events/chess-industrial-day-2023, December 2023.

[122] Vesal Vojdani, Kalmer Apinis, Vootele Rõtov, Helmut Seidl, Varmo Vene, and Ralf
Vogler. Static race detection for device drivers: the Goblint approach. In Proceedings
of the 31st IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE ’16, pages 391–402, New York, NY, USA, August 2016. Association for
Computing Machinery. ISBN 978-1-4503-3845-5. doi:10.1145/2970276.2970337.

[123] Nalin Wadhwa, Jui Pradhan, Atharv Sonwane, Surya Prakash Sahu, Nagara-
jan Natarajan, Aditya Kanade, Suresh Parthasarathy, and Sriram Rajamani.
Frustrated with Code Quality Issues? LLMs can Help! September 2023.
doi:10.48550/arXiv.2309.12938.

[124] Philip Wadler and Peter Thiemann. The marriage of effects and mon-
ads. ACM Trans. Comput. Logic, 4(1):1–32, jan 2003. ISSN 1529-3785.
doi:10.1145/601775.601776.

https://doi.org/10.4230/LIPIcs.ECOOP.2019.27
https://formela.fi.muni.cz/events/chess-industrial-day-2023
https://doi.org/10.1145/2970276.2970337
https://doi.org/10.48550/arXiv.2309.12938
https://doi.org/10.1145/601775.601776

	Scientific Background
	Objectives, hypotheses, methods
	Impact
	Expected Results, Scientific Impact, and Future Research
	Importance of the project outside academia

